Question:

Integrate the function: \(e^{2x} sinx\)

Updated On: Nov 10, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The correct answer is: \(I=\frac{e^{2x}}{5}[2sinx-cosx]+C\)
Let \(I=∫e^{2x} sinx dx...(1)\)
Integrating by parts,we obtain
\(I=sinx∫e^{2x} dx-∫[(\frac{d}{dx}-sinx)∫e^{2x} dx]dx\)
\(⇒I=sinx.\frac{e^{2x}}{2}-∫cosx.\frac{e^{2x}}{2}dx\)
\(⇒I=e^{2x}sin\frac{x}{2}-\frac{1}{2}∫e^{2x}cosx\, dx\)
Again integrating by parts,we obtain
\(I=\frac{e^{2x}.sinx}{2}-\frac{1}{2}[cosx∫e^{2x}dx-∫(\frac{d}{dx}cosx)∫e^{2x}dx]dx\)
\(⇒I=\frac{e^{2x}sinx}{2}-\frac{1}{2}[cosx.\frac{e^{2x}}{2}-∫(-sinx)\frac{e^{2x}}{2}dx]\)
\(⇒I=\frac{e^{2x}sinx}{2}-\frac{1}{2}[\frac{e^{2x}cosx}{2}+\frac{1}{2}∫e^{2x}sinx dx]\)
\(⇒I=\frac{e^{2x}sinx}{2}-\frac{e^{2x}cosx}{4}-\frac{1}{4}I [From (1)]\)
\(⇒I=\frac{1}{4}I=\frac{e^{2x}.sinx}{2}-\frac{e^{2x}cosx}{4}\)
\(⇒\frac{5}{4}I=\frac{e^{2x}sinx}{2}-\frac{e^{2x}cosx}{4}\)
\(⇒I=\frac{4}{5}[\frac{e^{2x}sinx}{2}-\frac{e^{2x}cosx}{4}]+C\)
\(⇒I=\frac{e^{2x}}{5}[2sinx-cosx]+C\)
Was this answer helpful?
1
0

Concepts Used:

Integration by Partial Fractions

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,