Let's go through the steps to solve the integral using the substitution method
Given:
\[I = \int \frac{dx}{e^x + e^{-x}}\]
First, rewrite the integrand:
\[I = \int \frac{dx}{e^x + e^{-x}} = \int \frac{dx}{e^x \left(1 + e^{-2x}\right)}\]
Now, make the substitution \( e^x = t \). Therefore, \( dx = \frac{dt}{t} \):
Substitute \( e^x = t \) into the integral:
\[I = \int \frac{dt/t}{t(1 + t^{-2})} = \int \frac{dt}{t^2 + 1}\]
This simplifies to:
\[I = \int \frac{dt}{1 + t^2}\]
The integral of \(\frac{1}{1 + t^2}\) is the arctangent function:
\[I = \arctan(t) + C\]
Now, substitute back \( t = e^x \):
\[I = \arctan(e^x) + C\]
Therefore, the integral \(\int \frac{dx}{e^x + e^{-x}}\) is:
\[I = \arctan(e^x) + C\]
Hence, the correct Answer is Option A\(=tan^{-1}(e^x)+C\)
\(tan^{-1}(e^x)+C\)
\(tan^{-1}(e^{-x})+C\)
\(tan^{-1}(e^x-e^{-x})+C\)
\(log(e^x+e^{-x})+C\)
The correct answer is A:\(=tan^{-1}(e^x)+C\)
Let \(I=∫\frac{dx}{e^x+e^{-x}}dx=∫\frac{e^x}{e^{2x}+1}dx\)
Also,let \(e^x=t⇒e^x dx=dt\)
\(∴I=∫\frac{dt}{1+t^2}\)
\(=tan^{-1}+C\)
\(=tan^{-1}(e^x)+C\)
Hence,the correct Answer is A.
What is the Planning Process?
Definite integral is an operation on functions which approximates the sum of the values (of the function) weighted by the length (or measure) of the intervals for which the function takes that value.
Definite integrals - Important Formulae Handbook
A real valued function being evaluated (integrated) over the closed interval [a, b] is written as :
\(\int_{a}^{b}f(x)dx\)
Definite integrals have a lot of applications. Its main application is that it is used to find out the area under the curve of a function, as shown below: