NCERT Solutions For Class 11 Physics Chapter 5: Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 5 Laws of Motion are provided in the article below. The branch of physics where we study the motion of a body by considering the cause which is the force which generates the motion is called Dynamics. Newton’s three laws of motion make us understand how objects act when standing still, while moving or when forces behave upon them. 

Class 11 Physics Chapter 5 Laws of Motion belongs to Unit 3 which has a weightage of 23 marks along with Unit 2 Kinematics and Unit 3. The Class 11 Physics Chapter 5 NCERT Solutions deals with the concepts of force and Laws of MotionNon-contact forceInertia and Mass.

Download PDF: NCERT Solutions for Class 11 Physics Chapter 5


NCERT Solutions for Class 11 Physics Chapter 5

NCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT SolutionsNCERT Solutions


Class 11 Physics Chapter 5 – Concepts Covered

  • Newton’s First Law of Motion is referred to as the “Law of Inertia”. The law defines inertia, an inertial frame of reference, and force.
A body will remain at rest or continue to be in motion with a uniform velocity unless an external force is applied to it.
  • Newton’s Second Law of Motion: When an external force is applied to a body with constant mass, the force produces an acceleration. The acceleration that is produced is directly proportional to the force and then inversely proportional to the mass of the body.
\(\overrightarrow {F} = K {dP \over dt} = Km \overrightarrow a\)
When body A exerts a force on some other body B, then B exerts an equal and opposite force on A.
  • Linear momentum of a body is the product of the mass and velocity of the body.

Linear Momentum = mass x velocity 

  • Impulse is the product of force and the small-time interval for which the force acts. 
\(Impulse= \int Fdt\)

CBSE CLASS XII Related Questions

  • 1.
    Two batteries of emfs 3V and 6V and internal resistances 0.2 and 0.4 are connected in parallel. This combination is connected to a 4 resistor. Find:
    (i) the equivalent emf of the combination
    (ii) the equivalent internal resistance of the combination
    (iii) the current drawn from the combination


      • 2.
        A charge \( Q \) is fixed in position. Another charge \( q \) is brought near charge \( Q \) and released from rest. Which of the following graphs is the correct representation of the acceleration of the charge \( q \) as a function of its distance \( r \) from charge \( Q \)?

          •  representation of the  acceleration of the charge q
          • representation of the  acceleration of the charge q
          • representation of the  acceleration of the charge q
          • representation of the  acceleration of the charge q

        • 3.
          Two point charges \( 5 \, \mu C \) and \( -1 \, \mu C \) are placed at points \( (-3 \, \text{cm}, 0, 0) \) and \( (3 \, \text{cm}, 0, 0) \), respectively. An external electric field \( \vec{E} = \frac{A}{r^2} \hat{r} \) where \( A = 3 \times 10^5 \, \text{V m} \) is switched on in the region. Calculate the change in electrostatic energy of the system due to the electric field.


            • 4.
              Two convex lenses A and B, each of focal length 10.0 cm, are mounted on an optical bench at 50.0 cm and 70.0 cm respectively. An object is mounted at 20.0 cm. Find the nature and position of the final image formed by the combination.


                • 5.

                  Which one out of the following materials is \(\textit{not}\) paramagnetic
                   

                    • Aluminium
                    • Sodium Chloride
                    • Calcium
                    • Copper Chloride

                  • 6.
                    In the circuit, three ideal cells of e.m.f. \( V \), \( V \), and \( 2V \) are connected to a resistor of resistance \( R \), a capacitor of capacitance \( C \), and another resistor of resistance \( 2R \) as shown in the figure. In the steady state, find (i) the potential difference between P and Q, (ii) the potential difference across capacitor C.
                    potential difference across capacitor C

                      CBSE CLASS XII Previous Year Papers

                      Comments


                      No Comments To Show