Let $ \alpha ( a) \, and \, \beta (a) $ be the roots of the equation
$ (\sqrt [3] {1 + a} - 1) x^2 - (\sqrt {1 + a} - 1) x + (\sqrt [ 6] {1 + a} - 1) = 0$, where
a > - 1. Then, $ lim_{a \to 0^+ } $, $ \alpha (a) \, and \, lim_{a \to 0^+ } \beta $ (a) are