Question:

When light of wavelength $ \lambda $ falls on a thin film of thick- ness t and refractive index n, the essential conditions for the production of constructive interference fringes by the rays A and B is: (m = 1,2,3,...)

Updated On: Jul 14, 2022
  • $ 2nt\,\cos \,r=m\lambda $
  • $ nt\,\cos \,r=\left( m-\frac{1}{2} \right)\lambda $
  • $ nt\,\cos \,r=m\lambda $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Answer (a) $ 2nt\,\cos \,r=\left( m-\frac{1}{2} \right)\lambda $
Was this answer helpful?
0
0

Top Questions on Youngs double slit experiment

View More Questions

Concepts Used:

Young’s Double Slit Experiment

  • Considering two waves interfering at point P, having different distances. Consider a monochromatic light source ‘S’ kept at a relevant distance from two slits namely S1 and S2. S is at equal distance from S1 and S2. SO, we can assume that S1 and S2 are two coherent sources derived from S.
  • The light passes through these slits and falls on the screen that is kept at the distance D from both the slits S1 and S2. It is considered that d is the separation between both the slits. The S1 is opened, S2 is closed and the screen opposite to the S1 is closed, but the screen opposite to S2 is illuminating.
  • Thus, an interference pattern takes place when both the slits S1 and S2 are open. When the slit separation ‘d ‘and the screen distance D are kept unchanged, to reach point P the light waves from slits S1 and S2 must travel at different distances. It implies that there is a path difference in the Young double-slit experiment between the two slits S1 and S2.

Read More: Young’s Double Slit Experiment