Step 1: Relation between stress and strain Young’s modulus is given by:
\[ Y = \frac{\text{Stress}}{\text{Strain}} = \frac{\frac{F}{A}}{\frac{\Delta \ell}{\ell}}. \]
Rearranging for \( \Delta \ell \):
\[ \Delta \ell = \frac{F \ell}{A Y}. \]
Step 2: Substitute given values
Substitute into the formula:
\[ \Delta \ell = \frac{200 \cdot 2}{2 \cdot 10^{-4} \cdot 10^{11}}. \]
Step 3: Simplify the expression
\[ \Delta \ell = \frac{400}{2 \times 10^7} = 2 \times 10^{-5} \, \text{m}. \]
Convert to micrometers (\( \mu \text{m} \)):
\[ \Delta \ell = 20 \, \mu \text{m}. \]
Final Answer: 20 \( \mu \text{m} \).
List-I (Molecule / Species) | List-II (Property / Shape) |
---|---|
(A) \(SO_2Cl_2\) | (I) Paramagnetic |
(B) NO | (II) Diamagnetic |
(C) \(NO^{-}_{2}\) | (III) Tetrahedral |
(D) \(I^{-}_{3}\) | (IV) Linear |
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: