We are given two vectors: \[ \vec{A} = 2\hat{i} - \hat{j} + \hat{k}, \quad \vec{B} = 3\hat{i} + 4\hat{j} \]
Step 1: Find the cross product of \( \vec{A} \) and \( \vec{B} \)
The cross product of two vectors \( \vec{A} \) and \( \vec{B} \) gives a vector perpendicular to both: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & 4 & 0 \end{vmatrix} \] Using the determinant method, we compute the cross product: \[ \vec{A} \times \vec{B} = \hat{i} \left( \begin{vmatrix} -1 & 1 \\ 4 & 0 \end{vmatrix} \right) - \hat{j} \left( \begin{vmatrix} 2 & 1 \\ 3 & 0 \end{vmatrix} \right) + \hat{k} \left( \begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix} \right) \] \[ \vec{A} \times \vec{B} = \hat{i} (-4 - 4) - \hat{j} (0 - 3) + \hat{k} (8 + 3) \] \[ \vec{A} \times \vec{B} = -8\hat{i} + 3\hat{j} + 11\hat{k} \]
Step 2: Find the unit vector
To get the unit vector, we divide the cross product by its magnitude: \[ |\vec{A} \times \vec{B}| = \sqrt{(-8)^2 + 3^2 + 11^2} = \sqrt{64 + 9 + 121} = \sqrt{146} \] Thus, the unit vector is: \[ \hat{n} = \frac{1}{\sqrt{146}} (-8\hat{i} + 3\hat{j} + 11\hat{k}) \] This corresponds to option (b).
Step 3: Conclusion
The correct unit vector perpendicular to both vectors is \( \frac{1}{\sqrt{146}} (-4\hat{i} + 3\hat{j} + 11\hat{k}) \).
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals: