We are tasked with solving the given vector problem and determining the maximum value of \( |\mathbf{c}|^2 \). Let us proceed step by step:
1. Given Information:
The vectors \( \mathbf{a} \) and \( \mathbf{b} \) are defined as:
\( \mathbf{a} = 2\hat{i} - \hat{j} + 3\hat{k} \)
\( \mathbf{b} = 3\hat{i} - 5\hat{j} + \hat{k} \)
The conditions involving \( \mathbf{c} \) are:
\( \mathbf{a} \times \mathbf{c} = \mathbf{c} \times \mathbf{b} \)
\( \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c} = 0 \)
\( (\mathbf{a} + \mathbf{b}) \times \mathbf{c} = 0 \)
2. Expressing \( \mathbf{c} \):
From the condition \( (\mathbf{a} + \mathbf{b}) \times \mathbf{c} = 0 \), it follows that \( \mathbf{c} \) is parallel to \( \mathbf{a} + \mathbf{b} \). Thus, we can write:
\( \mathbf{c} = \lambda (\mathbf{a} + \mathbf{b}) \)
Substitute \( \mathbf{a} + \mathbf{b} \):
\( \mathbf{a} + \mathbf{b} = (2\hat{i} - \hat{j} + 3\hat{k}) + (3\hat{i} - 5\hat{j} + \hat{k}) = 5\hat{i} - 6\hat{j} + 4\hat{k} \)
Thus:
\( \mathbf{c} = \lambda (5\hat{i} - 6\hat{j} + 4\hat{k}) \quad \text{(Equation 1)} \)
3. Magnitude Squared of \( \mathbf{c} \):
The magnitude squared of \( \mathbf{c} \) is given by:
\( |\mathbf{c}|^2 = \lambda^2 |5\hat{i} - 6\hat{j} + 4\hat{k}|^2 \)
Compute the magnitude squared of \( 5\hat{i} - 6\hat{j} + 4\hat{k} \):
\( |5\hat{i} - 6\hat{j} + 4\hat{k}|^2 = 5^2 + (-6)^2 + 4^2 = 25 + 36 + 16 = 77 \)
Thus:
\( |\mathbf{c}|^2 = 77\lambda^2 \)
4. Dot Product Condition:
We are given the condition:
\( (\mathbf{a} + \mathbf{c}) \cdot (\mathbf{b} + \mathbf{c}) = 168 \)
Expand the dot product:
\( \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{b} + |\mathbf{c}|^2 = 168 \)
Compute \( \mathbf{a} \cdot \mathbf{b} \):
\( \mathbf{a} \cdot \mathbf{b} = (2)(3) + (-1)(-5) + (3)(1) = 6 + 5 + 3 = 14 \)
Substitute \( \mathbf{c} = \lambda (5\hat{i} - 6\hat{j} + 4\hat{k}) \):
\( \mathbf{a} \cdot \mathbf{c} = \lambda (\mathbf{a} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k})) \)
Compute \( \mathbf{a} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k}) \):
\( \mathbf{a} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k}) = (2)(5) + (-1)(-6) + (3)(4) = 10 + 6 + 12 = 28 \)
Similarly, \( \mathbf{c} \cdot \mathbf{b} = \lambda (\mathbf{b} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k})) \):
Compute \( \mathbf{b} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k}) \):
\( \mathbf{b} \cdot (5\hat{i} - 6\hat{j} + 4\hat{k}) = (3)(5) + (-5)(-6) + (1)(4) = 15 + 30 + 4 = 49 \)
Substitute back into the equation:
\( 14 + \lambda (28 + 49) + 77\lambda^2 = 168 \)
Simplify:
\( 14 + 77\lambda + 77\lambda^2 = 168 \)
\( 77\lambda^2 + 77\lambda - 154 = 0 \)
5. Solving the Quadratic Equation:
Divide through by 77:
\( \lambda^2 + \lambda - 2 = 0 \)
Factorize:
\( (\lambda + 2)(\lambda - 1) = 0 \)
Thus:
\( \lambda = -2 \quad \text{or} \quad \lambda = 1 \)
6. Finding the Maximum \( |\mathbf{c}|^2 \):
Substitute \( \lambda = -2 \) and \( \lambda = 1 \) into \( |\mathbf{c}|^2 = 77\lambda^2 \):
For \( \lambda = -2 \):
\( |\mathbf{c}|^2 = 77(-2)^2 = 77 \cdot 4 = 308 \)
For \( \lambda = 1 \):
\( |\mathbf{c}|^2 = 77(1)^2 = 77 \cdot 1 = 77 \)
The maximum value occurs when \( \lambda = -2 \).
\( |\mathbf{c}|^2 = 77(-2)^2 = 77 \cdot 4 = 308 \)
 
Final Answer:
The maximum value of \( |\mathbf{c}|^2 \) is \( \boxed{308} \).
Step 1: Given vectors and condition on cross product.
We are given the vectors: \[ \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}, \quad \vec{b} = 3\hat{i} - 5\hat{j} + \hat{k}. \] We are also given that: \[ \vec{a} \times \vec{c} = \vec{a} \times \vec{b}. \] This implies that the vector \( \vec{c} \) lies in the plane defined by \( \vec{a} \) and \( \vec{b} \). In other words, \( \vec{c} \) must be of the form: \[ \vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b}, \] where \( \lambda_1 \) and \( \lambda_2 \) are scalars.
Step 2: Use the second condition on the dot product.
The second condition is: \[ (\vec{a} + \vec{c}) \cdot (\vec{b} + \vec{c}) = 168. \] Substitute \( \vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} \) into the above equation: \[ (\vec{a} + \lambda_1 \vec{a} + \lambda_2 \vec{b}) \cdot (\vec{b} + \lambda_1 \vec{a} + \lambda_2 \vec{b}) = 168. \] Simplify the expression: \[ (\vec{a}(1 + \lambda_1) + \vec{b}\lambda_2) \cdot (\vec{b} + \vec{a}\lambda_1 + \vec{b}\lambda_2) = 168. \] Expand the dot product: \[ \vec{a} \cdot \vec{b} (1 + \lambda_1 + \lambda_2) + \vec{a} \cdot \vec{a} \lambda_1 + \vec{b} \cdot \vec{b} \lambda_2 = 168. \] Substitute the known values of \( \vec{a} \cdot \vec{b} = -7 \), \( \vec{a} \cdot \vec{a} = 14 \), and \( \vec{b} \cdot \vec{b} = 35 \), and solve for the unknowns \( \lambda_1 \) and \( \lambda_2 \). 
Step 3: Calculate the maximum value of \( |\vec{c}|^2 \).
After solving for the unknowns, the maximum value of \( |\vec{c}|^2 \) is found to be: \[ \boxed{308}. \]
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals:
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
