Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
The problem asks for the value of \(|\vec{a} \times \vec{d}|^2\), given the vectors \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) and two conditions that define the vector \(\vec{d}\).
This problem utilizes several fundamental properties of vector algebra:
Step 1: Simplify the first condition involving vector \(\vec{d}\).
The first condition is \(\vec{b} \times \vec{d} = \vec{c} \times \vec{d}\). We can rearrange this equation:
\[ \vec{b} \times \vec{d} - \vec{c} \times \vec{d} = \vec{0} \]Using the distributive property of the cross product:
\[ (\vec{b} - \vec{c}) \times \vec{d} = \vec{0} \]This implies that the vector \(\vec{d}\) is parallel to the vector \((\vec{b} - \vec{c})\). Therefore, \(\vec{d}\) can be written as a scalar multiple of \((\vec{b} - \vec{c})\).
\[ \vec{d} = \lambda (\vec{b} - \vec{c}) \quad \text{for some scalar } \lambda \]Step 2: Calculate the vector \((\vec{b} - \vec{c})\).
Given \(\vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k}\) and \(\vec{c} = 2\hat{i} - \hat{j} + 2\hat{k}\):
\[ \vec{b} - \vec{c} = (3 - 2)\hat{i} + (-3 - (-1))\hat{j} + (3 - 2)\hat{k} \] \[ \vec{b} - \vec{c} = 1\hat{i} - 2\hat{j} + 1\hat{k} \]Step 3: Use the second condition to find the scalar \(\lambda\).
We now have \(\vec{d} = \lambda (\hat{i} - 2\hat{j} + \hat{k})\). The second condition is \(\vec{a} \cdot \vec{d} = 4\). We are given \(\vec{a} = \hat{i} + 2\hat{j} + \hat{k}\).
\[ \vec{a} \cdot \vec{d} = (\hat{i} + 2\hat{j} + \hat{k}) \cdot (\lambda\hat{i} - 2\lambda\hat{j} + \lambda\hat{k}) = 4 \] \[ (1)(\lambda) + (2)(-2\lambda) + (1)(\lambda) = 4 \] \[ \lambda - 4\lambda + \lambda = 4 \] \[ -2\lambda = 4 \implies \lambda = -2 \]Step 4: Determine the vector \(\vec{d}\).
Substitute the value of \(\lambda = -2\) back into the expression for \(\vec{d}\):
\[ \vec{d} = -2(\hat{i} - 2\hat{j} + \hat{k}) = -2\hat{i} + 4\hat{j} - 2\hat{k} \]Step 5: Calculate the cross product \(\vec{a} \times \vec{d}\).
\[ \vec{a} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ -2 & 4 & -2 \end{vmatrix} \] \[ = \hat{i}((2)(-2) - (1)(4)) - \hat{j}((1)(-2) - (1)(-2)) + \hat{k}((1)(4) - (2)(-2)) \] \[ = \hat{i}(-4 - 4) - \hat{j}(-2 + 2) + \hat{k}(4 + 4) \] \[ = -8\hat{i} - 0\hat{j} + 8\hat{k} = -8\hat{i} + 8\hat{k} \]Step 6: Calculate the final value \(|\vec{a} \times \vec{d}|^2\).
The squared magnitude of the vector \(-8\hat{i} + 8\hat{k}\) is:
\[ |\vec{a} \times \vec{d}|^2 = (-8)^2 + (0)^2 + (8)^2 \] \[ = 64 + 0 + 64 = 128 \]The value of \(|\vec{a} \times \vec{d}|^2\) is 128.
Given 
\( \vec{b} \times \vec{d} = \vec{c} \times \vec{d} \). 
\( \vec{b} \times \vec{d} - \vec{c} \times \vec{d} = \vec{0} \) 
\( (\vec{b} - \vec{c}) \times \vec{d} = \vec{0} \) 
This implies that \( \vec{d} \) is parallel to \( \vec{b} - \vec{c} \). 
\( \vec{b} - \vec{c} = (3\hat{i} - 3\hat{j} + 3\hat{k}) - (2\hat{i} - \hat{j} + 2\hat{k}) = (3 - 2)\hat{i} + (-3 - (-1))\hat{j} + (3 - 2)\hat{k} = \hat{i} - 2\hat{j} + \hat{k} \) 
So, \( \vec{d} = \lambda (\vec{b} - \vec{c}) = \lambda (\hat{i} - 2\hat{j} + \hat{k}) \) 
for some scalar \( \lambda \). Given \( \vec{a} \cdot \vec{d} = 4 \). 
\( (\hat{i} + 2\hat{j} + \hat{k}) \cdot (\lambda (\hat{i} - 2\hat{j} + \hat{k})) = 4 \) 
\( \lambda ((\hat{i} + 2\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} + \hat{k})) = 4 \) 
\( \lambda (1(1) + 2(-2) + 1(1)) = 4 \) \( \lambda (1 - 4 + 1) = 4 \) \( \lambda (-2) = 4 \) \( \lambda = -2 \) 
Now we can find \( \vec{d} \): \( \vec{d} = -2 (\hat{i} - 2\hat{j} + \hat{k}) = -2\hat{i} + 4\hat{j} - 2\hat{k} \) 
We need to find \( |\vec{a} \times \vec{d}|^2 \). First, calculate \( \vec{a} \times \vec{d} \): \[ \vec{a} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 1 & 2 & 1 -2 & 4 & -2 \end{vmatrix} = \hat{i}(2(-2) - 1(4)) - \hat{j}(1(-2) - 1(-2)) + \hat{k}(1(4) - 2(-2)) \] \[ \vec{a} \times \vec{d} = \hat{i}(-4 - 4) - \hat{j}(-2 + 2) + \hat{k}(4 + 4) = -8\hat{i} - 0\hat{j} + 8\hat{k} = -8\hat{i} + 8\hat{k} \] Now, find the magnitude squared: \[ |\vec{a} \times \vec{d}|^2 = (-8)^2 + (0)^2 + (8)^2 = 64 + 0 + 64 = 128 \] 
Alternatively, using the identity \( |\vec{a} \times \vec{d}|^2 + (\vec{a} \cdot \vec{d})^2 = |\vec{a}|^2 |\vec{d}|^2 \): 
\( |\vec{a}|^2 = 1^2 + 2^2 + 1^2 = 1 + 4 + 1 = 6 \) \( |\vec{d}|^2 = (-2)^2 + (4)^2 + (-2)^2 = 4 + 16 + 4 = 24 \) \( (\vec{a} \cdot \vec{d})^2 = (4)^2 = 16 \) \( |\vec{a} \times \vec{d}|^2 = |\vec{a}|^2 |\vec{d}|^2 - (\vec{a} \cdot \vec{d})^2 = 6 \times 24 - 16 = 144 - 16 = 128 \)
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals:
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
