Consider the following two statements:
Statement I: For any two non-zero complex numbers \( z_1, z_2 \),
\((|z_1| + |z_2|) \left| \frac{z_1}{|z_1|} + \frac{z_2}{|z_2|} \right| \leq 2 (|z_1| + |z_2|)\)
Statement II: If \( x, y, z \) are three distinct complex numbers and \( a, b, c \) are three positive real numbers such that
\(\frac{a}{|y - z|} = \frac{b}{|z - x|} = \frac{c}{|x - y|},\)
then
\(\frac{a^2}{y - z} + \frac{b^2}{z - x} + \frac{c^2}{x - y} = 1.\)
Between the above two statements,