We aim to compute:
\(\alpha^6 + \alpha^4 + \beta^4 - 5\alpha^2\)
Since α and β satisfy\( x^2 - x + 2 = 0\), we know:
\(\alpha^2 = \alpha - 2, \quad \beta^2 = \beta - 2\)
Using these relations, we compute higher powers of α:
\(= \alpha^4(\alpha - 2) + \alpha^4 - 5\alpha^2 + (\beta - 2)^2\)
\(= \alpha^5 - \alpha^4 - 5\alpha^2 + \beta^2 - 4\beta + 4\)
\(= \alpha^3(\alpha - 2) - \alpha^4 - 5\alpha^2 + \beta - 2 - 4\beta + 4\)
\(= -2\alpha^3 - 5\alpha^2 - 3\beta + 2\)
\(= -2\alpha(\alpha - 2) - 5\alpha^2 - 3\beta + 2\)
\(= -7\alpha^2 + 4\alpha - 3\beta + 2\)
\(= -7(\alpha - 2) + 4\alpha - 3\beta + 2\)
\(= -3\alpha - 3\beta + 16\)
\(= -3(1) + 16\)
\(= 13\)
Let \( \vec{a} = 3\hat{i} + \hat{j} - 2\hat{k} \), \( \vec{b} = 4\hat{i} + \hat{j} + 7\hat{k} \), and \( \vec{c} = \hat{i} - 3\hat{j} + 4\hat{k} \) be three vectors.
If a vector \( \vec{p} \) satisfies \( \vec{p} \times \vec{b} = \vec{c} \times \vec{b} \) and \( \vec{p} \cdot \vec{a} = 0 \), then \( \vec{p} \cdot (\hat{i} - \hat{j} - \hat{k}) \) is equal to