Escape velocity ($v_e$) is given by $v_e = \sqrt{\frac{2GM}{R}}$, where G is the gravitational constant, M is the mass of the planet, and R is the radius.
For the new planet, $M' = 9M$ and $R' = 16R$.
$v_e' = \sqrt{\frac{2G(9M)}{16R}} = \frac{3}{4}\sqrt{\frac{2GM}{R}} = \frac{3}{4}v_e$
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.