To solve this problem, we start by understanding the conditions given and relating them to the equations of motion and energy.
Now, let's use the equations for potential energy and kinetic energy:
According to the problem, \(KE = 3 \times PE\):
\(\frac{1}{2}mv^2 = 3 \times mgh\)
\(v^2 = 6gh\) (Equation 1)
Using conservation of energy principle, the total mechanical energy at the initial point should equal the total mechanical energy at height \(h\):
Setting the initial and current energies equal:
\(mgS = mgh + \frac{1}{2}mv^2\)
\(mgS = mgh + 3mgh\) (since KE = 3PE)
\(mgS = 4mgh\)
\(gS = 4gh\)
\(h = \frac{S}{4}\) (Equation 2)
Now substitute Equation 2 into Equation 1 to find the velocity:
\(v^2 = 6g \left(\frac{S}{4}\right)\)
\(v^2 = \frac{3gS}{2}\)
\(v = \sqrt{\frac{3gS}{2}}\)
Therefore, the height from the surface of the earth is \(\frac{S}{4}\) and the speed of the particle is \(\sqrt{\frac{3gS}{2}}\).
\( V^2 = 0 + 2g(S-x) \) \( V^2 = 2g(S-x) \)
At B, Potential energy = mgx Kinetic energy
= \( \frac{1}{2} mv^2 \) \( \frac{1}{2} mv^2 = 3mgx \)
\( gx = \frac{1}{6} v^2 = \frac{1}{6} 2g(S-x) \) \( 4x = S \)
\( x = \frac{S}{4} \) \( V = \sqrt{2g \times \frac{3S}{4}} = \sqrt{\frac{3gS}{2}} \)
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: The kinetic energy needed to project a body of mass $m$ from earth surface to infinity is $\frac{1}{2} \mathrm{mgR}$, where R is the radius of earth. Reason R: The maximum potential energy of a body is zero when it is projected to infinity from earth surface.
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
