Given below are two statements. In the light of the above statements, choose the correct answer from the options given below:
Match the Compounds (List - I) with the appropriate Catalyst/Reagents (List - II) for their reduction into corresponding amines.
Predict the major product of the following reaction sequence:
1 Faraday electricity was passed through Cu$^{2+}$ (1.5 M, 1 L)/Cu and 0.1 Faraday was passed through Ag$^+$ (0.2 M, 1 L) electrolytic cells. After this, the two cells were connected as shown below to make an electrochemical cell. The emf of the cell thus formed at 298 K is:Given: $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = 0.34 \, \text{V} $ $ E^\circ_{\text{Ag}^+/ \text{Ag}} = 0.8 \, \text{V} $ $ \frac{2.303RT}{F} = 0.06 \, \text{V} $
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are:
Given below are the pairs of group 13 elements showing their relation in terms of atomic radius. $(\mathrm{B}<\mathrm{Al}),(\mathrm{Al}<\mathrm{Ga}),(\mathrm{Ga}<\mathrm{In})$ and $(\mathrm{In}<\mathrm{Tl})$ Identify the elements present in the incorrect pair and in that pair find out the element (X) that has higher ionic radius $\left(\mathrm{M}^{3+}\right)$ than the other one. The atomic number of the element (X) is
Given below are two statements: Statement I: Nitrogen forms oxides with +1 to +5 oxidation states due to the formation of $\mathrm{p} \pi-\mathrm{p} \pi$ bond with oxygen.Statement II: Nitrogen does not form halides with +5 oxidation state due to the absence of d-orbital in it. In the light of the above statements, choose the correct answer from the options given below:
The major product (A) formed in the following reaction sequence is
On charging the lead storage battery, the oxidation state of lead changes from $\mathrm{x}_{1}$ to $\mathrm{y}_{1}$ at the anode and from $\mathrm{x}_{2}$ to $\mathrm{y}_{2}$ at the cathode. The values of $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}$ are respectively:
Number of stereoisomers possible for the complexes, $\left[\mathrm{CrCl}_{3}(\mathrm{py})_{3}\right]$ and $\left[\mathrm{CrCl}_{2}(\mathrm{ox})_{2}\right]^{3-}$ are respectively} (py = pyridine, ox = oxalate)
The most stable carbocation from the following is:
The reactions which cannot be applied to prepare an alkene by elimination, areChoose the correct answer from the options given below:
Given below are two statements: Statement I: D-(+)-glucose + D-(+)-fructose $\xrightarrow{H_2O}$ sucrose sucrose $\xrightarrow{\text{Hydrolysis}}$ D-(+)-glucose + D-(+)-fructoseStatement II: Invert sugar is formed during sucrose hydrolysis. In the light of the above statements, choose the correct answer from the options given below -
Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is