g is decreasing in \((0, \frac \pi4)\)
g′ is increasing in \((0, \frac \pi4)\)
g+g′ is increasing in \((0, \frac \pi2)\)
g-g' is increasing in \((0, \frac \pi2)\)
\(∫(\frac {x(cosx−sinx)}{e^x+1} + \frac {g(x)(e^x+1−xe^x)}{(e^x+1)2})dx = \frac {xg(x)}{e^x+1}+c,\)
Differentiating on both sides
\(\frac {x(cosx−sinx)}{e^x+1} + \frac {g(x)(e^x+1−xe^x)}{(e^x+1)2}\)
\(=\frac {(e^x+1)(g(x)+xg^{\frac 1x})−xg(x)e^x}{(e^x+1)^2}\)
\(=\frac {g(x)[e^x+1−xe^x]}{(e^x+1)^2} +\frac {xg'(x)(e^x+1)}{(e^x+1)^2}\)
\(=\frac {x(cosx−sinx)}{e^x+1}\)
\(= \frac {xg'(x)}{e^x+1}\)
⇒ g‘(x)=cosx−sinx>0 in \((0, \frac \pi4)\)
⇒ g(x) is increasing in \((0, \frac \pi4)\)
⇒ Option (A) is wrong.
Now,
g”(x)=−sinx−cosx<0 in \((0, \frac \pi4)\)
⇒ g(x) is increasing in \((0, \frac \pi4)\)
⇒ Option (B) is wrong.
Let h(x) = g(x) + g′(x)
⇒ ℎ‘(x)=g‘(x)+g”(x)=−2sinx<0 in x∈\((0, \frac \pi2)\)
⇒ g + g' is decreasing in \((0, \frac \pi2)\)
⇒ Option (C) is wrong.
Let J(x) = g(x) – g′(x)
J‘(x)=g‘(x)−g”(x)=2cosx>0 in \((0, \frac \pi2)\)
⇒ g – g′ is increasing in \((0, \frac \pi2)\)
⇒ Option (D) is correct.
So, the correct option is (D): g-g' is increasing in \((0, \frac \pi2)\)
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
Increasing Function:
On an interval I, a function f(x) is said to be increasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) ≤ f(y)
Decreasing Function:
On an interval I, a function f(x) is said to be decreasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) ≥ f(y)
Strictly Increasing Function:
On an interval I, a function f(x) is said to be strictly increasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) < f(y)
Strictly Decreasing Function:
On an interval I, a function f(x) is said to be strictly decreasing, if for any two numbers x and y in I such that x < y,
⇒ f(x) > f(y)