The given function is:
\[ f(x) = 10 - x^2. \]
Step 1: Check for one-one.
A function \(f\) is one-one if for \(f(x_1) = f(x_2)\), we have \(x_1 = x_2\). Assume:
\[ f(x_1) = f(x_2) \implies 10 - x_1^2 = 10 - x_2^2. \]
Simplify:
\[ x_1^2 = x_2^2 \implies x_1 = \pm x_2. \]
Since \(x_1 \neq x_2\) in general, the function is not one-one.
Step 2: Check for onto.
A function \(f\) is onto if for every \(y \in \mathbb{R}\), there exists an \(x \in \mathbb{R}\) such that \(f(x) = y\). Rearrange:
\[ f(x) = 10 - x^2 \quad \text{to solve for } x: \] \[ y = 10 - x^2 \implies x^2 = 10 - y. \]
For \(x^2 \geq 0\), we require \(10 - y \geq 0\), or:
\[ y \leq 10. \]
The function \(f(x)\) maps \(x \in \mathbb{R}\) to \(y \in (-\infty, 10]\). Hence, \(f\) is onto.
Conclusion: The function \(f(x) = 10 - x^2\) is onto but not one-one.
LIST I | LIST II | ||
A. | Range of y=cosec-1x | I. | R-(-1, 1) |
B. | Domain of sec-1x | II. | (0, π) |
C. | Domain of sin-1x | III. | [-1, 1] |
D. | Range of y=cot-1x | IV. | \([\frac{-π}{2},\frac{π}{2}]\)-{0} |