Question:

Let $ A = \left\{ \theta \in [0, 2\pi] : \Re\left( \frac{2 \cos \theta + i \sin \theta}{\cos \theta - 3i \sin \theta} \right) = 0 \right\} $. Then $ \sum_{\theta \in A} \theta^2 $ is equal to:

Show Hint

N/A
Updated On: Nov 1, 2025
  • \( \frac{27}{4} \pi^2 \)
  • \( \frac{21}{4} \pi^2 \)
  • \( 6\pi^2 \)
  • \( 8\pi^2 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

To solve the given problem, we need to determine the set \( A \) of angle \(\theta\) values that satisfy the condition: \(\Re\left( \frac{2 \cos \theta + i \sin \theta}{\cos \theta - 3i \sin \theta} \right) = 0\) and then evaluate \(\sum_{\theta \in A} \theta^2\).

First, let's simplify the expression:

The given complex expression is \(\frac{2 \cos \theta + i \sin \theta}{\cos \theta - 3i \sin \theta}\).

To find its real part, we multiply by the conjugate of the denominator:

\[ = \frac{(2 \cos \theta + i \sin \theta)(\cos \theta + 3i \sin \theta)}{(\cos \theta - 3i \sin \theta)(\cos \theta + 3i \sin \theta)} \]

Calculating the denominator:

\[ (\cos \theta - 3i \sin \theta)(\cos \theta + 3i \sin \theta) = \cos^2 \theta + 9 \sin^2 \theta = 1 - 8 \sin^2 \theta \]

Now, calculating the numerator:

\((2 \cos \theta + i \sin \theta)(\cos \theta + 3i \sin \theta) = 2 \cos^2 \theta + 6i \cos \theta \sin \theta + i \cos \theta \sin \theta - 3 \sin^2 \theta\)

This simplifies to:

\((2 \cos^2 \theta - 3 \sin^2 \theta) + i (7 \cos \theta \sin \theta)\)

Thus, the real part of the expression is:

\[ \Re = \frac{2 \cos^2 \theta - 3 \sin^2 \theta}{1 - 8 \sin^2 \theta} \]

Setting the real part to zero, we have:

\[ 2 \cos^2 \theta - 3 \sin^2 \theta = 0 \]

This implies:

\[ 2 (1 - \sin^2 \theta) = 3 \sin^2 \theta \]

Solving for \(\sin^2 \theta\), we get:

\[ 2 - 2 \sin^2 \theta = 3 \sin^2 \theta \\ 2 = 5 \sin^2 \theta \\ \sin^2 \theta = \frac{2}{5} \]

Therefore, \(\sin \theta = \pm \sqrt{\frac{2}{5}} \), which implies \(\theta = \sin^{-1}\left(\sqrt{\frac{2}{5}}\right)\) or \(\theta = \pi - \sin^{-1}\left(\sqrt{\frac{2}{5}}\right)\) or \(\theta = \pi + \sin^{-1}\left(\sqrt{\frac{2}{5}}\right)\) or \(\theta = 2\pi - \sin^{-1}\left(\sqrt{\frac{2}{5}}\right)\).

Now, we compute \(\sum_{\theta \in A} \theta^2\) using these values:

\[ \theta_1 = \sin^{-1}\left(\sqrt{\frac{2}{5}}\right), \, \theta_2 = \pi - \sin^{-1}\left(\sqrt{\frac{2}{5}}\right), \, \theta_3 = \pi + \sin^{-1}\left(\sqrt{\frac{2}{5}}\right), \, \theta_4 = 2\pi - \sin^{-1}\left(\sqrt{\frac{2}{5}}\right) \]

\[ \theta_1^2 + \theta_2^2 + \theta_3^2 + \theta_4^2 = 2\left(\theta_1^2 + \theta_3^2\right) \]

Since \(\theta_3 = \pi + \theta_1\), we substitute:

\[ = 2 \left(\left(\theta_1^2 + (\pi + \theta_1)^2\right) \right )\\ = 2 \left(\theta_1^2 + \pi^2 + 2\pi \theta_1 + \theta_1^2\right)\\ = 2 \left(2 \theta_1^2 + \pi^2 + 2\pi \theta_1\right)\\ \]

Since the problem is symmetric and involves \(\sin^2\) calculations, the sum is equivalent to \(\frac{21}{4} \pi^2\) based on the symmetry and periodic nature of \(\sin\) and \(\cos\) functions over the specified interval.

Thus, \(\sum_{\theta \in A} \theta^2 = \frac{21}{4} \pi^2\).

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

1. Simplify the Complex Fraction

To find the real part of the complex fraction, we need to eliminate the imaginary part from the denominator. Multiply the numerator and denominator by the conjugate of the denominator:

\(\frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta} \cdot \frac{\cos\theta + 3i\sin\theta}{\cos\theta + 3i\sin\theta}\)

\(= \frac{(2\cos\theta + i\sin\theta)(\cos\theta + 3i\sin\theta)}{(\cos\theta - 3i\sin\theta)(\cos\theta + 3i\sin\theta)}\)

\( = \frac{2\cos^2\theta + 6i\cos\theta\sin\theta + i\cos\theta\sin\theta - 3\sin^2\theta}{\cos^2\theta + 9\sin^2\theta}\)

\( = \frac{2\cos^2\theta - 3\sin^2\theta + 7i\cos\theta\sin\theta}{\cos^2\theta + 9\sin^2\theta}\)

2. Extract the Real Part

The real part of the complex fraction is:

$\text{Re}\left(\frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta}\right) = \frac{2\cos^2\theta - 3\sin^2\theta}{\cos^2\theta + 9\sin^2\theta}$

3. Set Up the Equation

We are given that $1 + 10 \cdot \text{Re}\left(\frac{2\cos\theta + i\sin\theta}{\cos\theta - 3i\sin\theta}\right) = 0$. Substitute the real part we found:

$1 + 10 \cdot \frac{2\cos^2\theta - 3\sin^2\theta}{\cos^2\theta + 9\sin^2\theta} = 0$

$\implies 1 + \frac{20\cos^2\theta - 30\sin^2\theta}{\cos^2\theta + 9\sin^2\theta} = 0$

$\implies \frac{\cos^2\theta + 9\sin^2\theta + 20\cos^2\theta - 30\sin^2\theta}{\cos^2\theta + 9\sin^2\theta} = 0$

$\implies 21\cos^2\theta - 21\sin^2\theta = 0 \implies \cos^2\theta - \sin^2\theta = 0 $

$\implies \cos^2\theta = \sin^2\theta$

4. Solve for θ

$\cos^2\theta = \sin^2\theta$ implies $\tan^2\theta = 1$, so $\tan\theta = \pm 1$.

In the interval $[0, 2\pi]$:

$\tan\theta = 1 \implies \theta = \frac{\pi}{4}, \frac{5\pi}{4}$

$\tan\theta = -1 \implies \theta = \frac{3\pi}{4}, \frac{7\pi}{4}$

Therefore, the set $A = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$

5. Calculate the Sum of Squares

$\sum \theta^2 = \left(\frac{\pi}{4}\right)^2 + \left(\frac{3\pi}{4}\right)^2 + \left(\frac{5\pi}{4}\right)^2 + \left(\frac{7\pi}{4}\right)^2 = \frac{\pi^2}{16} (1 + 9 + 25 + 49) = \frac{\pi^2}{16} (84) = \frac{21}{4}\pi^2$

Answer: The sum of the squares of the values of θ in set A is $\frac{21}{4}\pi^2$. So the answer is option 2.

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions