We are given \( y = \cos\!\left(\frac{\pi}{3} + \cos^{-1}\!\frac{x}{2}\right) \) and asked to evaluate the expression \( (x - y)^2 + 3y^2 \) in terms of \(x\).
Use the cosine addition identity and the relation between sine and cosine via inverse cosine. For any angle \( \theta \):
\[ \cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta,\quad \text{and if } \cos\theta = u,\ \text{then } \sin\theta=\sqrt{1-u^2}\ (\theta\in[0,\pi]). \]
Step 1: Let \( \theta = \cos^{-1}\!\left(\frac{x}{2}\right) \). Then \( \cos\theta = \frac{x}{2} \) and, since \( \theta \in [0,\pi] \),
\[ \sin\theta = \sqrt{1-\cos^2\theta} = \sqrt{1-\left(\frac{x}{2}\right)^2} = \frac{\sqrt{4-x^2}}{2}. \]
Step 2: Expand \( y = \cos\!\left(\frac{\pi}{3}+\theta\right) \) using \( \cos\frac{\pi}{3}=\frac12 \) and \( \sin\frac{\pi}{3}=\frac{\sqrt{3}}{2} \):
\[ y=\cos\frac{\pi}{3}\cos\theta - \sin\frac{\pi}{3}\sin\theta = \frac12\cdot\frac{x}{2} - \frac{\sqrt{3}}{2}\cdot\frac{\sqrt{4-x^2}}{2} = \frac{x}{4} - \frac{\sqrt{3}}{4}\sqrt{4-x^2}. \]
Step 3: Set \( a=\frac{x}{4} \) and \( b=\frac{\sqrt{3}}{4}\sqrt{4-x^2} \). Then \( y=a-b \) and
\[ x-y = x-(a-b) = \frac{3x}{4} + b. \]
Step 4: Compute the required expression:
\[ (x-y)^2 + 3y^2 = \left(\frac{3x}{4}+b\right)^2 + 3(a-b)^2. \]
Expand and group like terms:
\[ \left(\frac{3x}{4}\right)^2 + \frac{3x}{2}\,b + b^2 \;+\; 3a^2 - 6ab + 3b^2 = \frac{9x^2}{16} + 3a^2 + 4b^2 + \left(\frac{3x}{2}b - 6ab\right). \]
Step 5: Note the mixed terms cancel since \( a=\tfrac{x}{4} \):
\[ \frac{3x}{2}b - 6ab = \frac{3x}{2}b - 6\left(\frac{x}{4}\right)b = 0. \]
Also compute \( 3a^2 = 3\left(\frac{x}{4}\right)^2 = \frac{3x^2}{16} \) and \( 4b^2 = 4\left(\frac{3}{16}(4-x^2)\right) = \frac{12}{16}(4-x^2)=3-\frac{3x^2}{4} \). Hence,
\[ (x-y)^2 + 3y^2 = \left(\frac{9x^2}{16} + \frac{3x^2}{16}\right) + \left(3 - \frac{3x^2}{4}\right) = \frac{12x^2}{16} + 3 - \frac{3x^2}{4} = \frac{3x^2}{4} + 3 - \frac{3x^2}{4} = 3. \]
The expression simplifies to the constant value 3, independent of \(x\):
\[ \boxed{(x - y)^2 + 3y^2 = 3}. \]
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 