Given differential equation:
\[ \frac{dy}{dx} + 2y = \sin(2x), \quad y(0) = \frac{3}{4} \]
The integrating factor (I.F) is:
\[ \text{I.F} = e^{\int 2dx} = e^{2x} \]
Multiplying through by the integrating factor:
\[ ye^{2x} = \int e^{2x} \sin(2x) \, dx \]
To solve the integral, we use integration by parts:
\[ ye^{2x} = e^{2x} \left( \frac{2 \sin 2x - 2 \cos 2x}{4 + 4} \right) + C \]
\[ ye^{2x} = e^{2x} \left( \frac{\sin 2x - \cos 2x}{4} \right) + C \]
Using the initial condition \( y(0) = \frac{3}{4} \):
\[ \frac{3}{4} = \left( \frac{1}{4} (0 - 2) \right) + C \]
\[ \frac{3}{4} = -\frac{1}{4} + C \implies C = 1 \]
Thus, the solution is:
\[ y = \frac{\sin 2x - \cos 2x}{8} + e^{-2x} \]
To find \( y\left(\frac{\pi}{8}\right) \):
\[ y\left(\frac{\pi}{8}\right) = \frac{1}{8} \left( 2 \sin \frac{\pi}{4} - 2 \cos \frac{\pi}{4} \right) + e^{-\pi/4} \]
Since \( \sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \): \[ y\left(\frac{\pi}{8}\right) = 0 + e^{-\pi/4} = e^{-\pi/4} \]