8
-6
Given vectors:
\( \mathbf{a} = 2\hat{i} + 2\hat{j} + 3\hat{k} \)
\( \mathbf{b} = -\hat{i} + 2\hat{j} + \hat{k} \)
\( \mathbf{c} = 3\hat{i} + \hat{j} \)
Let \( \mathbf{r} = \mathbf{a} + \lambda \mathbf{b} \)
\( \mathbf{r} = (2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k} \)
Since \( \mathbf{r} \perp \mathbf{c} \), their dot product is zero:
\( \mathbf{r} \cdot \mathbf{c} = 0 \)
Compute the dot product:
\( [(2 - \lambda) \cdot 3] + [(2 + 2\lambda) \cdot 1] + [(3 + \lambda) \cdot 0] = 0 \)
Simplify:
\( 3(2 - \lambda) + (2 + 2\lambda) = 0 \)
\( 6 - 3\lambda + 2 + 2\lambda = 0 \)
\( 8 - \lambda = 0 \Rightarrow \lambda = 8 \)
Final Answer:
\( \boxed{\lambda = 8} \)
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals: