In the expansion $(1+x)^{2n},t_{3r} = \, ^{2n}C_{3r-1} (x)^{3r-1}$
and $\hspace20mm \, t_{r+2}= \, ^{2n}C_{r+1} (x) ^{r+1}$
Since, binomial coefficients of t$_3r$ and t$_{r+ 2}$ are equal
$\Rightarrow \, \, \, \, \, \, \, \, 3r-1=r+1 \, or \, 2n=(3r-1)+(r+1)$
$\Rightarrow \, \, \, \, \, \, \, \, $ 2r=2 $ \, or \, \, \, \, \, \, \, \, $ 2n = 4r
$\Rightarrow \, \, \, \, \, \, \, \, $ r = 1 $ \, or \, \, \, \, \, \, \, \, $ n=2r
But $ \, \, \, \, \, \, \, \, $ r >1
$\therefore \, \, $We take, n=2r