The curve is given as:
\( y(1 + x^2) = 2 - x \).
At the point where the curve crosses the \( x \)-axis, \( y = 0 \). Substitute \( y = 0 \) into the equation:
\( 0(1 + x^2) = 2 - x \implies x = 2 \).
To find \( \frac{dy}{dx} \), differentiate both sides of the equation with respect to \( x \):
\[ \frac{d}{dx} \left[y(1 + x^2)\right] = \frac{d}{dx}[2 - x]. \]
Using the product rule on the left:
\[ (1 + x^2) \frac{dy}{dx} + y(2x) = -1. \]
Substitute \( y = 0 \) at \( x = 2 \) into the equation:
\[ (1 + 2^2) \frac{dy}{dx} = -1 \implies 5 \frac{dy}{dx} = -1. \]
Thus:
\[ \frac{dy}{dx} = -\frac{1}{5}. \]
Given \( \frac{dy}{dx} = \frac{1}{A} \), we find:
\[ A = 5. \]
Fe (%) | Net value (INR per tonne) |
58 | 4000 |
62 | 4500 |