Escape velocity of a body from earth is 11.2 km/s. If the radius of a planet be one-third the radius of earth and mass be one-sixth that of earth, the escape velocity from the planet is:
11.2 km/s
8.4 km/s
4.2 km/s
7.9 km/s
Solution: The escape velocity \( V_e \) from a celestial body is given by the formula:
\[ V_e = \sqrt{\frac{2GM}{R}}, \]
where:
  - \( G \) is the gravitational constant,
  - \( M \) is the mass of the body,
  - \( R \) is the radius of the body.
Given Values for Earth: Escape velocity from Earth, \( V_{e,\text{earth}} = 11.2 \, \text{km/s} \). For Earth, let:
  Mass \( M_e \) and radius \( R_e \) be constants.
For the Planet: The radius of the planet \( R_p = \frac{1}{3} R_e \). The mass of the planet \( M_p = \frac{1}{6} M_e \).
Calculating Escape Velocity for the Planet: Substituting the values into the escape velocity formula:
\[ V_{e,\text{planet}} = \sqrt{\frac{2G \left( \frac{1}{6} M_e \right)}{\frac{1}{3} R_e}}. \]
Simplifying the expression:
\[ V_{e,\text{planet}} = \sqrt{\frac{2GM_e}{R_e}} \times \sqrt{\frac{1}{6} \times 3}. \]
Thus, it can be expressed as:
\[ V_{e,\text{planet}} = V_{e,\text{earth}} \times \sqrt{\frac{1}{2}}. \]
Substituting \( V_{e,\text{earth}} = 11.2 \, \text{km/s} \):
\[ V_{e,\text{planet}} = 11.2 \times \sqrt{\frac{1}{2}} = 11.2 \times 0.7071 \approx 7.9 \, \text{km/s}. \]
Thus, the escape velocity from the planet is: 7.9 km/s.
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
