The enthalpy change for the combustion reaction can be calculated using Hess's law:
\[\Delta H = \sum \Delta H_f (\text{products}) - \sum \Delta H_f (\text{reactants}).\]
Step 1: Write the given reaction
The reaction for 1 mole of benzene is:
\[\text{C}_6\text{H}_6(l) + \frac{15}{2} \text{O}_2(g) \rightarrow 6\text{CO}_2(g) + 3\text{H}_2\text{O}(l).\]
Step 2: Calculate the enthalpy change for 1 mole of benzene
Using the standard enthalpies of formation:
\[\Delta H_f (\text{CO}_2(g)) = -393.5 \, \text{kJ/mol},\]
\[\Delta H_f (\text{H}_2\text{O}(l)) = -286 \, \text{kJ/mol},\]
\[\Delta H_f (\text{C}_6\text{H}_6(l)) = 48.5 \, \text{kJ/mol}.\]
For the products:
\[\Delta H_f (\text{products}) = [6 \times (-393.5)] + [3 \times (-286)].\]
\[\Delta H_f (\text{products}) = -2361 - 858 = -3219 \, \text{kJ/mol}.\]
For the reactants:
\[\Delta H_f (\text{reactants}) = [1 \times 48.5] + \left(\frac{15}{2} \times 0 \right).\]
\[\Delta H_f (\text{reactants}) = 48.5 \, \text{kJ/mol}.\]
The enthalpy change for the combustion of 1 mole of benzene is:
\[\Delta H = \Delta H_f (\text{products}) - \Delta H_f (\text{reactants}),\]
\[\Delta H = -3219 - 48.5 = -3267.5 \, \text{kJ/mol}.\]
Step 3: Calculate for 2 moles of benzene
For 2 moles of benzene:
\[\Delta H = 2 \times (-3267.5) = -6535 \, \text{kJ}.\]
Final Answer: \(x = 6535 \, \text{kJ}\).
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: