\documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsmath} \begin{document} The electric flux is given by Gauss's Law: \[ \Phi = \oint \vec{E} \cdot d\vec{A}. \] The field $\vec{E} = 2x \hat{i}$ varies with $x$. For the cube, only the left ($x = 0$) and right ($x = 2$) faces contribute: \[ \Phi = E_\text{right} A - E_\text{left} A. \] Substituting $A = 4 \, \mathrm{m}^2$, $E_\text{right} = 2(2) = 4$, and $E_\text{left} = 2(0) = 0$: \[ \Phi = 4 \cdot 4 - 0 \cdot 4 = 16 \, \mathrm{Nm}^2/\mathrm{C}. \]
A cubical volume is bounded by the surfaces $x=0, x= a , y=0, y= a , z=0, z= a$ The electric field in the region is given by $\vec{E}=E_0 x \hat{ t }$ Where $E_0=4 \times 10^4 NC ^{-1} m ^{-1}$ If $a=2 cm$, the charge contained in the cubical volume is $Q \times 10^{-14} C$ The value of $Q$ is ___ Take \(E_{0}=9\times 10^{-2}C^{2}/Nm^{2}\)
LIST I | LIST II | ||
A | Gauss's Law in Electrostatics | I | \(\oint \vec{E} \cdot d \vec{l}=-\frac{d \phi_B}{d t}\) |
B | Faraday's Law | II | \(\oint \vec{B} \cdot d \vec{A}=0\) |
C | Gauss's Law in Magnetism | III | \(\oint \vec{B} \cdot d \vec{l}=\mu_0 i_c+\mu_0 \in_0 \frac{d \phi_E}{d t}\) |
D | Ampere-Maxwell Law | IV | \(\oint \vec{E} \cdot d \vec{s}=\frac{q}{\epsilon_0}\) |