The total mechanical energy is given by:
\( \text{Total Mechanical Energy} = \frac{PE}{2} \left( \frac{R_e}{20} \right) = 318.5 \)
The mechanical energy on the surface of the Earth is:
\( \text{ME on surface of Earth} = - \frac{GMm}{R_e} \quad (\text{KE on surface} = 0) \)
The mechanical energy at an altitude is:
\( \text{ME at altitude} = - \frac{GMm}{R_e + \frac{R_e}{20}} = - \frac{20GMm}{2 \times 21R_e} \)
Simplifying further:
\( \text{ME at altitude} = - \frac{10GMm}{21R_e} \)
Now, we calculate the change in total mechanical energy:
\( \text{Change in Total M.E.} = E_f - E_i \)
Substituting the values:
\( \text{Change in Total M.E.} = \frac{10GMm}{21R_e} - \frac{GMm}{R_e} = \frac{-10GMm + 21GMm}{21R_e} = \frac{11GMm}{21R_e} \)
Thus, we get:
\( x = 11 \)
Step 1: Data and formula for mechanical energy The total mechanical energy at the Earth’s surface is:
\( T.E_i = -\frac{GM_e m}{R_e}, \)
where:
The altitude of the orbit is given as \( h = 318.5 \, \text{km} \). Approximate:
\( h \approx \frac{R_e}{20}. \)
The total mechanical energy in the orbit is:
\( T.E_f = -\frac{GM_e m}{2(R_e + h)}. \)
Step 2: Substitute \( h \approx \frac{R_e}{20} \)
\( T.E_f = -\frac{GM_e m}{2 \left( R_e + \frac{R_e}{20} \right)} = -\frac{GM_e m}{2 \left( \frac{21R_e}{20} \right)}. \)
Simplify:
\( T.E_f = -\frac{10GM_e m}{21R_e}. \)
Step 3: Change in mechanical energy The change in total mechanical energy is:
\( \Delta E = T.E_f - T.E_i. \)
Substitute:
\( \Delta E = \left( -\frac{10GM_e m}{21R_e} \right) - \left( -\frac{GM_e m}{R_e} \right). \)
Simplify:
\( \Delta E = -\frac{10GM_e m}{21R_e} + \frac{21GM_e m}{21R_e}. \)
\( \Delta E = \frac{11GM_e m}{21R_e}. \)
Thus, \( x = 11 \).
Final Answer: \( x = 11 \).
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
