List-I | List-II | ||
P | If \(n = 2\) and \(\alpha = 180°\), then all the possible values of \(\theta_0\) will be | I | \(30\degree\) or \(0\degree\) |
Q | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\theta_0\) will be | II | \(60\degree\) or \(0\degree\) |
R | If \(n = √3\) and \(\alpha= 180°\), then all the possible values of \(\phi_0\) will be | III | \(45\degree\) or \( 0\degree\) |
S | If \(n = \sqrt2\) and \(\theta_0 = 45°\), then all the possible values of \(\alpha\) will be | IV | \(150\degree\) |
\[0\degree\] |
Given below are two statements: One is labelled as Assertion $A$ and the other is labelled as Reason $R$
Assertion (A) : The beam of electrons show wave nature and exhibit interference and diffraction
Reason (R) : Davisson Germer Experimentally verified the wave nature of electrons
In the light of the above statements, choose the most appropriate answer from the options given below :