Question:

$\cos ^{2} 5^{\circ}-\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}+\sin ^{2} 35^{\circ}$ $+\cos 15^{\circ} \sin 15^{\circ}-\cos 5^{\circ} \sin 35^{\circ}=$

Updated On: Apr 4, 2024
  • 0
  • 1
  • $\frac{3}{2}$
  • 2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

$\cos ^{2} 5^{\circ}-\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}+\sin ^{2} 35^{\circ}$
$+\cos 15^{\circ} \sin 15^{\circ}-\cos 5^{\circ} \sin 35^{\circ}$
$=\cos 5^{\circ}\left(\cos 5^{\circ}-\sin 35^{\circ}\right)-\cos 15^{\circ}\left(\cos 15^{\circ}-\sin 15^{\circ}\right)$
$+\sin ^{2} 35^{\circ}-\sin ^{2} 15^{\circ}$
$=\cos 5^{\circ}\left(\cos 5^{\circ}-\cos 55^{\circ}\right)-\cos 15^{\circ}\left(\cos 15^{\circ}-\cos 75^{\circ}\right)$
$+\sin 50^{\circ} \sin 20^{\circ}$
$=\cos 5^{\circ}\left(2 \sin 30^{\circ} \sin 25^{\circ}\right)-\cos 15^{\circ}\left(2 \sin 45^{\circ} \sin 30^{\circ}\right)$
$+\sin 50^{\circ} \sin 20^{\circ}$
$=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\cos 5^{\circ} \sin 25^{\circ}+\sin 50^{\circ} \sin 20^{\circ}$
$=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\frac{1}{2}\left(2 \cos 5^{\circ} \cos 65^{\circ}\right)+\frac{1}{2}\left(2 \sin 50^{\circ} \sin 20^{\circ}\right)$
$=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\frac{1}{2}\left[\cos 70^{\circ}+\cos 60^{\circ}+\cos 30^{\circ}-\cos 70^{\circ}\right]$
$=-\frac{\cos 5^{\circ}}{\sqrt{2}}+\frac{1}{2}\left[2 \cos 45^{\circ} \cos 15^{\circ}\right]$
$=-\frac{\cos 15^{\circ}}{\sqrt{2}}+\frac{\cos 15^{\circ}}{\sqrt{2}}=0$
Was this answer helpful?
0
0

Concepts Used:

Trigonometric Equations

Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.

A list of trigonometric equations and their solutions are given below: 

Trigonometrical equationsGeneral Solutions
sin θ = 0θ = nπ
cos θ = 0θ = (nπ + π/2)
cos θ = 0θ = nπ
sin θ = 1θ = (2nπ + π/2) = (4n+1) π/2
cos θ = 1θ = 2nπ
sin θ = sin αθ = nπ + (-1)n α, where α ∈ [-π/2, π/2]
cos θ = cos αθ = 2nπ ± α, where α ∈ (0, π]
tan θ = tan αθ = nπ + α, where α ∈ (-π/2, π/2]
sin 2θ = sin 2αθ = nπ ± α
cos 2θ = cos 2αθ = nπ ± α
tan 2θ = tan 2αθ = nπ ± α