If \[ \int x \sin x \sec^3 x \, dx = \frac{1}{2} \left[ f(x) \sec^2 x + g(x) \left( \frac{\tan x}{x} \right) \right] + c, \] \(\text{then which of the following is true?}\)
Let \( \mathbf{A} = 2\hat{i} + \hat{j} - 2\hat{k} \) and \( \mathbf{B} = \hat{i} + \hat{j} \). If \( \mathbf{C} \) is a vector such that \( |\mathbf{C} - \mathbf{A}| = 3 \) and the angle between \( \mathbf{A} \times \mathbf{B} \) and \( \mathbf{C} \) is \( 30^\circ \), then \( [(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}] = 3 \), the value of \( \mathbf{A} \cdot \mathbf{C} \) is equal to:
The negation of \( \sim S \vee ( \sim R \wedge S) \) \(\text{ is equivalent to}\)