Let $\vec{a}$ and $\vec{c}$ be unit vectors such that the angle between them is $\cos^{-1} \left( \frac{1}{4} \right)$. If $\vec{b} = 2\vec{c} + \lambda \vec{a}$. Where $\lambda > 0$ and $|\vec{b}| = 4$, then $\lambda$ is equal to:
If \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \, \mathbf{b} = 2\hat{i} - \hat{j} + 3\hat{k}, \, \mathbf{c} = \hat{i} - 2\hat{j} + \hat{k} \), \(\text{ then a vector of magnitude }\) \( \sqrt{22} \) \(\text{ which is parallel to }\) \( 2\mathbf{a} - \mathbf{b} + \mathbf{c} \) is:
If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \times \vec{b}|$ is:
If $\vec{a}$, $\vec{b}$ and $\vec{c}$ are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{a} \cdot \vec{c} = 2$ and $\vec{b} \cdot \vec{c} = 1$. If $|\vec{b}| = 1$, then the value of $|\vec{a}|$ is:
The length of the projection of \( \mathbf{a} = 2\hat{i} + 3\hat{j} + \hat{k} \) \(\text{ on }\) \( \mathbf{b} = -2\hat{i} + \hat{j} + 2\hat{k} \) \(\text{ is equal to:}\)
Let \( \mathbf{A} = 2\hat{i} + \hat{j} - 2\hat{k} \) and \( \mathbf{B} = \hat{i} + \hat{j} \). If \( \mathbf{C} \) is a vector such that \( |\mathbf{C} - \mathbf{A}| = 3 \) and the angle between \( \mathbf{A} \times \mathbf{B} \) and \( \mathbf{C} \) is \( 30^\circ \), then \( [(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}] = 3 \), the value of \( \mathbf{A} \cdot \mathbf{C} \) is equal to:
If \[ \mathbf{a} = \hat{i} - \hat{k}, \mathbf{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \mathbf{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}, \] \(\text{then }\) [\(\mathbf{a}\) \(\mathbf{b}\) \(\mathbf{c}\)] \(\text{ depends on:}\)
If \( (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}) \), then