The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is:
If f(x) = ex, h(x) = (fof) (x), then \(\frac{h'(x)}{h'(x)}\) =
The number of points on the curve \(y=54 x^5-135 x^4-70 x^3+180 x^2+210 x\) at which the normal lines are parallel \(to x+90 y+2=0\) is