The correct answer is B:7
Given that:
Equation of hyperbola is;
\(\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}\)⇒
\(\frac{x^2}{\frac{144}{25}}-\frac{y^2}{\frac{81}{25}}=1\)\(\therefore a^2=\frac{144}{25} , b^2=\frac{81}{25} \therefore e=\sqrt{1+\frac{b^2}{a^2}}\)\(\therefore\) Focii is (±ae,0) or (±3,0)
\(=\sqrt{1+\frac{81}{144}}=\frac{15}{12}\)Now for ellipse,
i.e,
\(\frac{x^2}{16}+\frac{y^2}{b^2}=1\)\(a^2=16\) ,then by considering eccentricity ‘e’,focii is (±4e,0)
as focii ellipse and hyperbola coincides each with other
then; 4e=3
⇒
\(e=\frac{3}{4}\)\(\therefore\) for ellipse
\(e^2=1-\frac{b^2}{a^2}\)⇒
\(\frac{9}{16}=1-\frac{b^2}{16}\)⇒
\(b^2=7\)