If the mean and the variance of 6, 4, a, 8, b, 12, 10, 13 are 9 and 9.25 respectively, then \(a + b + ab\) is equal to:
For four observations X,X2,X3,X4, it is given that ,\(∑x_i^{2}=656\) and \(∑x_i=32\). Then, the variance of these four observations is ?
Let the mean and variance of 12 observations be \( \frac{9}{2} \) and 4, respectively. Later on, it was observed that two observations were considered as 9 and 10 instead of 7 and 14 respectively. If the correct variance is \( \frac{m}{n} \), where \( m \) and \( n \) are coprime, then \( m + n \) is equal to:
For two groups of 15 sizes each, mean and variance of first group is 12, 14 respectively, and second group has mean 14 and variance of σ2. If combined variance is 13 then find variance of second group?