Consider the vectors
$$
\vec{x} = \hat{i} + 2\hat{j} + 3\hat{k},\quad
\vec{y} = 2\hat{i} + 3\hat{j} + \hat{k},\quad
\vec{z} = 3\hat{i} + \hat{j} + 2\hat{k}.
$$
For two distinct positive real numbers $ \alpha $ and $ \beta $, define
$$
\vec{X} = \alpha \vec{x} + \beta \vec{y} - \vec{z},\quad
\vec{Y} = \alpha \vec{y} + \beta \vec{z} - \vec{x},\quad
\vec{Z} = \alpha \vec{z} + \beta \vec{x} - \vec{y}.
$$
If the vectors $ \vec{X}, \vec{Y}, \vec{Z} $ lie in a plane, then the value of $ \alpha + \beta - 3 $ is ________.