Let \( y = f(x) \) be a thrice differentiable function in \( (-5, 5) \). Let the tangents to the curve \( y = f(x) \) at \( (1, f(1)) \) and \( (3, f(3)) \) make angles \( \frac{\pi}{6} \) and \( \frac{\pi}{4} \), respectively, with the positive x-axis. If \(2 \int_{\frac{1}{\sqrt{3}}}^{1} \left( \left( f'(t) \right)^2 + 1 \right) f''(t) \, dt = \alpha + \beta \sqrt{3}\) where \( \alpha \), \( \beta \) are integers, then the value of \( \alpha + \beta \) equals