Let $f, g$ and $h$ be the real valued functions defined on $R$ as $f(x)=\begin{cases} \frac{x}{|x|}, & x \neq 0 \\1, & x=0\end{cases}, g(x)=\begin{cases} \frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\1, & x=-1\end{cases}$ and $h(x)=2[x]-f(x)$, where $[x]$ is the greatest integer $\leq x$ Then the value of $\displaystyle\lim _{x \rightarrow 1} g(h(x-1))$ is