To determine the range of \( f(x) = 3\sqrt{x-2} + \sqrt{4-x} \), we analyze the domain of \( f(x) \) by finding values of \( x \) for which both square roots are real.
Therefore, \( x \) is restricted to the interval \([2, 4]\).
Next, we evaluate \( f(x) \) at the endpoints to determine the minimum and maximum values.
Thus, the minimum value \( \alpha \) is \( \sqrt{2} \), and the maximum value \( \beta \) is \( 3\sqrt{2} \).
Now, we calculate \( \alpha^2 + 2\beta^2 \):
\[ \alpha^2 + 2\beta^2 = (\sqrt{2})^2 + 2(3\sqrt{2})^2 = 2 + 2 \times 18 = 2 + 36 = 42. \]
Therefore, \( \alpha^2 + 2\beta^2 \) is equal to 42.
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: