Define electric dipole and electric dipole moment.

Jasmine Grover logo

Jasmine Grover

Content Strategy Manager

What is an Electric Dipole?

An electric dipole is a pair of equal and opposite electric charges separated by a small distance. This separation between the charges creates a dipole moment, which is a measure of the strength of the electric dipole.

Define electric dipole moment.

The dipole moment is defined as the product of the magnitude of one of the charges and the separation distance between the charges, multiplied by a unit vector pointing from the negative charge to the positive charge.

Mathematically, the electric dipole moment (p) is given by the formula:

μ = Q × r

where Q is the magnitude of the electric charge, and r is the distance between two charges.

Electric Dipole

Electric Dipole

The electric dipole moment is a vector quantity, meaning that it has both magnitude and direction.

  • The direction of the dipole moment is from the negative charge to the positive charge, and its magnitude depends on the strength of the charges and the distance between them.
  • Electric dipoles are important in many areas of physics and engineering, including electromagnetism, quantum mechanics, and molecular biology.
  • They are used to describe the behavior of electric fields in different materials and in different situations, and are also important in the design of electrical devices and in the study of chemical bonding.

Read More:

CBSE CLASS XII Related Questions

1.
A circular disc is rotating about its own axis at uniform angular velocity \(\omega.\) The disc is subjected to uniform angular retardation by which its angular velocity is decreased to \(\frac {\omega}{2}\) during 120 rotations. The number of rotations further made by it before coming to rest is

    • 120
    • 60
    • 40
    • 20

    2.
    (a) A circular coil of 30 turns and radius 8.0 cm carrying a current of 6.0 A is suspended vertically in a uniform horizontal magnetic field of magnitude 1.0 T. The field lines make an angle of 60° with the normal of the coil. Calculate the magnitude of the counter torque that must be applied to prevent the coil from turning. 
    (b) Would your answer change, if the circular coil in (a) were replaced by a planar coil of some irregular shape that encloses the same area? (All other particulars are also unaltered.)

        3.

        A parallel plate capacitor made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s−1.

        1. What is the rms value of the conduction current?
        2. Is the conduction current equal to the displacement current?
        3. Determine the amplitude of B at a point 3.0 cm from the axis between the plates.
        A parallel plate capacitor made of circular plates

            4.
            A circular disc is rotating about its own axis. An external opposing torque 0.02 Nm is applied on the disc by which it comes rest in 5 seconds. The initial angular momentum of disc is

              • $0.1\,kgm^2s^{-1}$
              • $0.04\,kgm^2s^{-1}$
              • $0.025\,kgm^2s^{-1}$
              • $0.01\,kgm^2s^{-1}$

              5.

              In a parallel plate capacitor with air between the plates, each plate has an area of 6 × 10–3 m2 and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?

                  6.
                  A convex lens of glass is immersed in water compared to its power in air, its power in water will

                    • increase
                    • decrease
                    • not change
                    • decrease for red light increase for violet light
                    CBSE CLASS XII Previous Year Papers

                    Comments



                    No Comments To Show