Question:

\(∫\dfrac{x+5}{x^{2}+1}dx=\)

Updated On: Aug 24, 2024
  • \( 3ln|x-1|-2ln|x+1|+C\)

  • \(2ln|x-1|-3ln|x+1|+C\)

  • \(ln|x-2|-ln|x+1|+C\)

  • \( ln|x+2|+ln|x+1|+C\)

  • \(2ln|x-1|+3ln|x-1|+C\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Approach Solution - 1

\(∫\dfrac{x+5}{x^{2}+1}dx=\)

So to solve this question, we can again use partial fraction decomposition.

Step 1: 

Factorize the denominator. \((x^2 - 1)\) can be factored as\((x - 1)(x + 1).\)

Step 2:

 Partial fraction decomposition. The expression \(\dfrac{x+5}{x^2 - 1}\) can be rewritten as the sum of two fractions with unknown constants \(A\) and \(B\)

\(\dfrac{x+5}{x^2 - 1}  = \dfrac{A}{x +1}+\dfrac{B}{x-1}\)

Step 3

Now to find the values of A and B, we need to find a common denominator, which is \((x- 1)(x + 1)\), and then equate the numerators: 

\(x + 5 = A(x+ 1) + B(x- 1)\)

Now, solve for A and B by comparing coefficients: \(A + B = 1\)

 (by comparing the coefficients of \(x\)\(A - B = 5\)  ⇢(by comparing the constant terms)

Adding the two equations: \(2A = 6\)

                                            ⇒\(A=3\)

Substituting the value of  \(A\) one of the equations to find we get 

\(B = -2\)

Step 4: 

Now we can re-write the parent expression as,

\(∫\dfrac{x + 5}{x^2 - 1} dx = ∫(\dfrac{A}{x - 1}+\dfrac{B}{x+ 1}) dx\)

\(=∫(\dfrac{3}{x-1}) - (\dfrac{2}{x+1})dx\)

\(=∫(\dfrac{3}{x-1}) - (\dfrac{2}{x+1})dx\)

\(=∫(\dfrac{3}{x-1})dx - ∫(\dfrac{2}{x+1})dx\)

\(= 3ln|x-1|-2ln|x+1|+C\) (Ans.)

Was this answer helpful?
0
14
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

\(∫\dfrac{x+5}{x^{2}+1}dx\)

So to solve this question, we can use partial fraction decomposition.

Step 1 :- $\int (\frac{3}{x-1} + \frac{-2}{x+1}) dx $

Step 2 :- $\int \frac{3}{x-1} dx+ \int \frac{-2}{x+1} dx $

Step 3 :- $3ln|x-1| + \int \frac{-2}{x+1} dx $

Step 4 :- $3ln|x-1| - 2 ln |x+1| +C$

So, the correct option is (A) : $3ln|x-1| - 2 ln |x+1| +C$

Was this answer helpful?
0
4

Top Questions on Integral Calculus

View More Questions

Concepts Used:

Integration by Partial Fractions

The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.

For examples,