We are asked to compute \( \csc 31^\circ \sec 59^\circ \).
Recall that \( \csc \theta = \frac{1}{\sin \theta} \) and \( \sec \theta = \frac{1}{\cos \theta} \). Thus:
\[
\csc 31^\circ \sec 59^\circ = \frac{1}{\sin 31^\circ} \times \frac{1}{\cos 59^\circ}.
\]
Using the identity \( \sin \theta = \cos (90^\circ - \theta) \), we can write:
\[
\sin 31^\circ = \cos 59^\circ.
\]
Therefore:
\[
\csc 31^\circ \sec 59^\circ = \frac{1}{\cos 59^\circ} \times \frac{1}{\cos 59^\circ} = 1.
\]
Thus, the value of \( \csc 31^\circ \sec 59^\circ \) is \( 1 \).