Question:

The value of the integral $\int\limits_0^{\pi/2}$($Sin^{100} x-Cos^{100}x)dx$ is

Updated On: Apr 9, 2024
  • $\frac {100!}{(100)^{100}} $
  • $\frac {1}{100} $
  • 0
  • $\frac {\pi}{100} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let $I =\int\limits_{0}^{\pi / 2}\left(\sin ^{100} x-\cos ^{100} x\right)\, d x$
$=\int\limits_{0}^{\pi / 2} \sin ^{100} x d x-\int_{0}^{\pi / 2} \cos ^{100}\, x \,d x $
$=\left[\frac{(\sin x)^{101}}{101} \cdot \cos x\right]_{0}^{\pi / 2} $
$-\left[\frac{(\cos x)^{101}}{101}(-\sin x)\right]_{0}^{\pi 2} $
$=0+0=0$
Was this answer helpful?
1
0