Step 1: Identify the Formula for Wavelength in Hydrogen Spectrum (Rydberg Formula)
For the hydrogen spectrum, the wavelength ($\lambda$) of a spectral line is given by the Rydberg formula:
\[
\frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)
\]
Where:
\begin{itemize}
\item $R_H$ is the Rydberg constant.
\item $n_1$ is the principal quantum number of the lower energy level.
\item $n_2$ is the principal quantum number of the higher energy level, where $n_2>n_1$.
\end{itemize}
Step 2: Define Balmer Series Parameters
For the Balmer series, the electron transitions end in the second energy level, meaning $n_1 = 2$.
Step 3: Calculate Wavelength for the First Line of Balmer Series
The first line of the Balmer series corresponds to a transition from $n_2 = 3$ to $n_1 = 2$.
Let this wavelength be $\lambda_1$.
\[
\frac{1}{\lambda_1} = R_H \left( \frac{1}{2^2} - \frac{1}{3^2} \right)
\]
\[
\frac{1}{\lambda_1} = R_H \left( \frac{1}{4} - \frac{1}{9} \right)
\]
Find a common denominator (36):
\[
\frac{1}{\lambda_1} = R_H \left( \frac{9 - 4}{36} \right)
\]
\[
\frac{1}{\lambda_1} = R_H \left( \frac{5}{36} \right) \quad \cdots (1)
\]
Step 4: Calculate Wavelength for the Second Line of Balmer Series
The second line of the Balmer series corresponds to a transition from $n_2 = 4$ to $n_1 = 2$.
Let this wavelength be $\lambda_2$.
\[
\frac{1}{\lambda_2} = R_H \left( \frac{1}{2^2} - \frac{1}{4^2} \right)
\]
\[
\frac{1}{\lambda_2} = R_H \left( \frac{1}{4} - \frac{1}{16} \right)
\]
Find a common denominator (16):
\[
\frac{1}{\lambda_2} = R_H \left( \frac{4 - 1}{16} \right)
\]
\[
\frac{1}{\lambda_2} = R_H \left( \frac{3}{16} \right) \quad \cdots (2)
\]
Step 5: Determine the Ratio of Wavelengths \( \frac{\lambda_1}{\lambda_2} \)
From equation (1), $\lambda_1 = \frac{36}{5 R_H}$.
From equation (2), $\lambda_2 = \frac{16}{3 R_H}$.
Now, calculate the ratio $\frac{\lambda_1}{\lambda_2}$:
\[
\frac{\lambda_1}{\lambda_2} = \frac{\frac{36}{5 R_H}}{\frac{16}{3 R_H}}
\]
Cancel out $R_H$:
\[
\frac{\lambda_1}{\lambda_2} = \frac{36}{5} \times \frac{3}{16}
\]
Simplify the fractions:
\[
\frac{\lambda_1}{\lambda_2} = \frac{9 \times 4}{5} \times \frac{3}{4 \times 4}
\]
\[
\frac{\lambda_1}{\lambda_2} = \frac{9}{5} \times \frac{3}{4}
\]
\[
\frac{\lambda_1}{\lambda_2} = \frac{27}{20}
\]
The ratio is $27:20$.
Step 6: Analyze Options
\begin{itemize}
\item Option (1): 9 : 5. Incorrect.
\item Option (2): 27 : 20. Correct, as it matches our calculated ratio.
\item Option (3): 20 : 27. Incorrect.
\item Option (4): 5 : 9. Incorrect.
\end{itemize}