The amount of a substance deposited during electrolysis is determined using Faraday’s laws of electrolysis. The formula is:
\[W = ZIt,\]
where:
- \(W\) is the mass of the substance deposited,
- \(Z\) is the electrochemical equivalent of the substance,
- \(I\) is the current passed, and
- \(t\) is the time for which the current is passed.
Step 1: Relating charge to electrochemical equivalent
We know that:
\[Q = It,\]
where \(Q\) is the total charge passed through the solution. Substituting this into the equation for \(W\), we get:
\[W = ZQ\]
Step 2: Deposition of silver
For one coulomb of charge (\(Q = 1 \, \text{C}\)), the mass of silver deposited is directly proportional to the electrochemical equivalent (\(Z\)) of silver. Thus:
\[W = ZQ = (\text{electrochemical equivalent of silver}).\]
Step 3: Conclusion
The quantity of silver deposited when one coulomb of charge is passed is equal to the electrochemical equivalent of silver. This matches the given option.
Final Answer: (4).
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: