We need to find the principal value of \( \sin^{-1} \left( \cos \frac{43\pi}{5} \right) \).
First, we simplify the angle \( \frac{43\pi}{5} \):
$$ \frac{43\pi}{5} = 8\pi + \frac{3\pi}{5} $$
Since the cosine function has a period of \( 2\pi \), we have:
$$ \cos \left( \frac{43\pi}{5} \right) = \cos \left( \frac{3\pi}{5} \right) $$
Now, we use the identity \( \cos x = \sin \left( \frac{\pi}{2} - x \right) \):
$$ \cos \left( \frac{3\pi}{5} \right) = \sin \left( \frac{\pi}{2} - \frac{3\pi}{5} \right) $$
$$ \frac{\pi}{2} - \frac{3\pi}{5} = \frac{5\pi - 6\pi}{10} = -\frac{\pi}{10} $$
So, we have:
$$ \cos \left( \frac{3\pi}{5} \right) = \sin \left( -\frac{\pi}{10} \right) $$
Now we need to find the principal value of \( \sin^{-1} \left( \sin \left( -\frac{\pi}{10} \right) \right) \). The principal value range for \( \sin^{-1} x \) is \( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \). Since \( -\frac{\pi}{10} \) lies within this range, the principal value is \( -\frac{\pi}{10} \).