First, recall the identity:
\[
\sin 2x = 2 \sin x \cos x
\]
Thus,
\[
\sin x \cos x = \frac{1}{2} \sin 2x
\]
The integral becomes:
\[
I = \int_0^{\frac{\pi}{4}} \frac{\frac{1}{2} \sin 2x}{\cos^4 x + \sin^4 x} \, dx
\]
Now, let’s simplify the denominator:
\[
\cos^4 x + \sin^4 x = (\cos^2 x + \sin^2 x)^2 - 2\cos^2 x \sin^2 x
\]
Since \(\cos^2 x + \sin^2 x = 1\), we get:
\[
\cos^4 x + \sin^4 x = 1 - 2 \cos^2 x \sin^2 x
\]
Now, substitute this into the integral:
\[
I = \int_0^{\frac{\pi}{4}} \frac{\frac{1}{2} \sin 2x}{1 - 2 \cos^2 x \sin^2 x} \, dx
\]
This can be solved using standard methods or numerical techniques. The final result can be obtained after solving the integral.