The orthocentre of the triangle with vertices $O(0, 0), A(0,3/2)$ and $B(-5, 0)$ is
$(-5/2,3/4)$
$(5/2,3/4)$
$(0, 0)$
$(-5, 3/2)$
Let, $\Delta \, AOB $ is the given triangle
Slope of $AB = \frac{\frac{3}{2}-0}{0+5} = \frac{3}{10}$
Slope of $BO = \frac{0-0}{0+54} =0$
The equation of line passing through A and perpendicular to BO is $ y-0 =- 0 \left(x - \frac{3}{2}\right) $
$\Rightarrow \, y = 0 \,\,\,\,\,\dots(i)$
and equation of line passing through 0 and perpendicular to AB is $y - 0 = - \frac{10}{3} (x -0)$
$\Rightarrow \; y = - \frac{10}{3} x \,\,\,\,\,\dots(ii)$
The intersection point of Eqs. (i) and (ii) (0, 0), which is the required orthocentre.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Mathematically, Geometry is one of the most important topics. The concepts of Geometry are derived w.r.t. the planes. So, Geometry is divided into three major categories based on its dimensions which are one-dimensional geometry, two-dimensional geometry, and three-dimensional geometry.
Consider a line L that is passing through the three-dimensional plane. Now, x,y and z are the axes of the plane and α,β, and γ are the three angles the line makes with these axes. These are commonly known as the direction angles of the plane. So, appropriately, we can say that cosα, cosβ, and cosγ are the direction cosines of the given line L.