For a wave,
$y = a \sin \frac{2\pi}{\lambda} \left(vt - x\right)\,\,\,\,\dots(i)$
Differentiating Eq (i) w.r.t. t, we get
$ \frac{dy}{dt} = \frac{2\pi va}{\lambda} \cos \frac{2\pi}{\lambda} \left(vt -x\right) $
Now, maximum velocity is obtained when
$\cos \frac{2\pi}{\lambda} \left(vt -x\right) =1 $
$\therefore v_{max } = \left(\frac{dy}{dt}\right)_{max } = \frac{2\pi v a}{\lambda} $
but $v_{max } = \frac{v}{2} $ (given)
$\therefore \frac{v}{2} = \frac{2\pi va}{\lambda}$
$ \Rightarrow a = \frac{\lambda}{4\pi} $