The incorrect statements regarding geometrical isomerism are: 
(A) Propene shows geometrical isomerism. 
(B) Trans isomer has identical atoms/groups on the opposite sides of the double bond. 
(C) Cis-but-2-ene has higher dipole moment than trans-but-2-ene. 
(D) 2-methylbut-2-ene shows two geometrical isomers. 
(E) Trans-isomer has lower melting point than cis isomer. 
 

To determine the incorrect statements regarding geometrical isomerism, let's analyze each option:
Thus, the incorrect statements are (A), (D), and (E). Therefore, the correct option is:
Draw the possible isomers of:
\[ [ \text{Co}(\text{en})_2\text{Cl}_2 ]^+ \]


Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)