Given the electric field of the electromagnetic wave:
\[ \vec{E} = \hat{i} 40 \cos \omega \left( t - \frac{z}{c} \right) \, \text{NC}^{-1} \]
In an electromagnetic wave, the magnetic field \(\vec{B}\) is perpendicular to both the electric field \(\vec{E}\) and the direction of propagation.
Since \(\vec{E}\) is along the \(\hat{i}\)-direction and the wave propagates along the \(\hat{k}\)-direction, the magnetic field \(\vec{B}\) must be along the \(\hat{j}\)-direction.
The relationship between the magnitudes of the electric and magnetic fields in an electromagnetic wave is given by:
\[ B = \frac{E}{c} \]
Substituting the given electric field magnitude:
\[ B = \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right) \]
Thus, the magnetic field is:
\[ \vec{B} = \hat{j} \frac{40}{c} \cos \omega \left( t - \frac{z}{c} \right) \]
List-I EM-Wave | List-II Wavelength Range |
---|---|
(A) Infra-red | (III) 1 mm to 700 nm |
(B) Ultraviolet | (II) 400 nm to 1 nm |
(C) X-rays | (IV) 1 nm to \(10^{-3}\) nm |
(D) Gamma rays | (I) \(<10^{-3}\) nm |
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is: