Column J | Column K | ||
---|---|---|---|
P | \(\text{H--CH(CH}_3\text{)}_2\) | i | 132 |
Q | \(\text{H--CH}_2\text{Ph}\) | ii | 110 |
R | \(\text{H--CH}=CH_2\) | iii | 95 |
S | \(\text{H--C≡CH}\) | iv | 88 |
P – iii, Q – iv, R – ii, S – i
P – i, Q – ii, R – iii, S – iv
P – iii, Q – ii, R – i, S – iv
P – ii, Q – i, R – iv, S – iii
Order of stability of free radical
\(Q > P > R > S\)
\(\text{Stability of free radical } \alpha \frac{1}{\text{Bond energy}}\)
∴ Order of bond energy :
\(S > R > P > Q\)
Initiation step is exothermic with \(\Delta\)H° = –58 kcal mol–1
Propagation step involving ·CH3 formation is exothermic with \(\Delta\)H° = –2 kcal mol–1
Propagation step involving CH3Cl formation is endothermic with \(\Delta\)H° = +27 kcal mol–1
The reaction is exothermic with \(\Delta\)H° = –25 kcal mol–1
Step (1) → Endothermic (bond breaking)
Step (2) → ∆H = 105 – 103 = 2 kcal/mol (Endothermic)
Step (3) → ∆H = 58 – 85 = –27 kcal/mol (Exothermic)
For complete reaction
\(\text{CH}_4\text{(g)} + \text{Cl}_2\text{(g)} \overset{\text{light}}{\longrightarrow} \text{CH}_3\text{Cl (g)} + \text{HCl(g)}\)
∆H = 58 + 105 – 85 – 103
= –25 kcal/mol